BROOKLINE HIGH SCHOOL EXPANSION

SCHEMATIC DESIGN SUSTAINABILITY OVERVIEW APRIL 3, 2018

TABLE OF CONTENTS

OVERVIEW

PROJECT SCOPE SCHEDULE & PROCESS SCHEMATIC DESIGN (SD) SCHEDULE WAYS OF "MEASURING" SUSTAINABILITY SUSTAINABILITY GOALS

111 CYPRESS BUILDING

ENERGY CONSERVATION CHALLENGES CONCEPTUAL "BLOCK" MODEL SD ENERGY MODEL COMPARISON WITH PRECEDENTS ENERGY CONSERVATION MEASURES (ECM)

STEM WING

ENERGY CONSERVATION CHALLENGES CONCEPTUAL STUDY - CHILLER OPTIONS SD ENERGY MODEL ENERGY CONSERVATION MEASURES (ECM)

TO UPDATE

PROJECT OVERVIEW, SCHEDULE, & PROCESS

SCOPE OF BROOKLINE HIGH SCHOOL EXPANSION PROJECT

5<u>0' 100' 200'</u>

BROOKLINE HIGH SCHOOL EXPANSION: LEED PROJECTS

200'

SCHEDULE & PROCESS: SUSTAINABLE DESIGN

Prior to May 7, 2018 Override Vote

Schematic Design (SD)

STEP 1

- Building organization & massing approved by stakeholders
- Conceptual Box Energy Models
- HVAC Systems analysis and selection
- Energy Charette w/ MassSave

STEP 2

- Envelope design approved by stakeholders
- Schematic Energy Model
- Glass / Wall Ratio Options
- LEED Checklist

After May 7, 2018 Override Vote

Design Development (DD)

- Systems refinement & analysis
- Envelope refinement & analysis
- LEED Workshop w/ Town

Construction Documents (CD)

- Design Documentation
- Rebate Analysis
- LEED Design Submission
- Final Energy Model

Construction

- LEED Construction Submittals
- Commissioning

SCHEDULE & PROCESS

OVERALL SCHEDULE

SCHEMATIC DESIGN (SD) SCHEDULE

8 PARALLEL TRACKS

SCHEDULE ON TRACK - MILESTONES MET SHOWN IN YELLOW:

BROOKLINE HIGH SCHOOL EXPANSION APRIL 3, 2018

WILLIAM RAWN ASSOCIATES | ARCHITECTS, Inc. PAGE 8

PROJECT SUSTAINABILITY

- EUI Target: 25 30
- LEED Minimum Certification Level: Silver
- Create a comfortable learning environment filled with natural light
- Design with future flexibility in mind
- Efficient, long lasting, and low maintenance MEP Systems
- Solar Ready

SUSTAINABILITY METRICS

ENERGY CONSERVATION

- Life Cycle Cost Analysis (LCCA)
- Energy Use Intensity (EUI)
- Zero Greenhouse Gas Emissions
- Net Zero: How much solar is required to bring the Project to Net Zero Site Energy?
- LEED

111 CYPRESS BUILDING

• 118,000 GSF academic building consisting of classrooms, library, cafeteria, office, and support spaces

CYPRESS BUILDING: ENERGY MODEL METHODOLOGIES

DEFINITIONS

BASELINE CASE: (ASHRAE 90.1-2010)

The building as designed, except that the envelope constructions, mechanical equipment, and lighting meet the minimum requirements of ASHRAE 90.1-2010.

DESIGN CASE: EARLY SD BLOCK MODEL

A Block model representing classroom and circulation areas modeled in eQUEST to compare HVAC alternatives.

DESIGN CASE: CURRENT SD ENERGY MODEL

The building as designed. The design inputs are based on the Schematic Design drawing and documents, the SD narratives and information provided by the design team. Every effort has been made to use reasonable assumptions for building components and systems where details were not available.

Block Mode

ASSUMPTIONS: MECHANICAL SYSTEMS

SUMMARY

BASELINE CASE

DESIGN CASE: EARLY SD BLOCK MODEL

- Packaged VAV with Reheat
 (DX/HW) with natural
 - (DX/HW), with natural draft boilers
- Natural Draft Boilers (80% efficiency)

HVAC Options studied:

- Option 1: VAV RTU with Gas Boiler
- Option 2: Displacement
 Dehumidification, WC
 Chiller, High Efficiency Gas
 Boilers
- Option 3: Variable Refrigerant Flow Heat Pumps, All Electric
- Option 4: Chilled Beams, WC Chiller, Gas Boiler

DESIGN CASE: CURRENT SD ENERGY MODEL

- (Option 2 from Block Model) Displacement Dehumidification, WC Chiller, High Efficiency Gas Boilers (95.4% efficiency)
- The building classrooms will be heated, ventilated and dehumidified only, providing partial cooling.
- Full air conditioning will be provided in Faculty spaces, Library and White Box zone

ASSUMPTIONS: ENVELOPE

SUMMARY

	BASELINE CASE	DESIGN CASE: EARLY SD BLOCK MODEL
WALL	U-VALUE: 0.064 R-VALUE: 13.0 + 7.5 C.I.	R-VALUE: 27
ROOF	U-VALUE: 0.048 R-VALUE: 20 C.I.	R-VALUE: 30
SPANDREL GLASS	U-VALUE: R-VALUE:	
CURTAIN WALL	U-VALUE: 0.45 R-VALUE: 2.22 SHGC: 0.4	40% GLAZED U-VALUE: 0.40 R-VALUE: 2.5

PUNCHED WINDOWS

U-VALUE: 0.55 **R-VALUE: 1.82** SHGC: 0.4

DESIGN CASE: CURRENT SD ENERGY MODEL

U-VALUE: 0.036 **R-VALUE: 27.62**

U-VALUE: 0.024 **R-VALUE: 40 C.I.**

U-VALUE: 0.045 **R-VALUE: 22.22**

U-VALUE: 0.39 **R-VALUE: 2.56** SHGC: 0.38

U-VALUE: 0.39 **R-VALUE: 2.56** SHGC: 0.27

ASSUMPTIONS: LIGHTING

SUMMARY

	BASELINE CASE	DESIGN CASE: EARLY SD BLOCK MODEL		
LIGHTING POWER DENSITY	 Calculation Method: Building Area Method Lighting Power Density: 0.99 W/SF 	N/A	• ([• [(
DAYLIGHT DIMMING CONTROLS	 Included where required by AHSRAE 90.1 2010 	N/A	• t	
EQUIPMENT POWER DENSITY	 Same as Design 	N/A	• • (• (
			• (

DESIGN CASE: CURRENT SD ENERGY MODEL

Calculation Method: Building Area Method Lighting Power Density: 0.7 W/SF (20% below ASHRAE 2013)

Perimeter Zones: Stepped dimming to 70% and 35% of full power

Kitchen (STEM & Cypress): 5.0 W/SF Office (STEM & Cypress): 1.5 W/SF Chem & Bio Labs (STEM): 2.5 W/SF Cafe (STEM): 2.5 W/SF Classroom (Cypress): 0.75 W/SF

ASSUMPTIONS: SCHEDULE & UTILITY RATES

SUMMARY

	BASELINE CASE	DESIGN CASE: EARLY SD BLOCK MODEL
PROJECT FLOOR AREA	118,000 SF	SAME AS BASELINE
SCHEDULE	EXTENDED SCHEDULE: ACADEMIC USE SCHEDULE + PARTIAL USE OF BUILDING AFTER HOURS, WEEKENDS AND SUMMER	TYPICAL HIGH SCHOOL SCHEDULE WITH HEAVY SUMMER USE
UTILITY RATES	ELECTRICITY \$0.157 / KWH GAS \$9.89 / MBTU Based on 2017 EIA State Average Rates	ELECTRICITY \$0.16/KWH GAS \$1.10/THERM Based on values provided by Miyakoda Consulting
BROOKLINE HIGH SCHOOL EXPANSION APRIL 3, 2018		

DESIGN CASE: CURRENT SD ENERGY MODEL

SAME AS BASELINE

SAME AS BASELINE

SAME AS BASELINE

CYPRESS BUILDING: CONCEPTUAL "BLOCK" MODEL

HVAC SYSTEMS

Method

• A Block model representing classroom and circulation areas modeled in eQUEST to compare HVAC alternatives

Basic Assumptions*

- 40% Glazed
- R-30 Roof
- R-27 Walls
- U=0.40 Windows
- Typical High School schedule, with heavy summer use

HVAC Options

- Option 1: VAV RTU with Gas Boiler
- Option 2: Displacement Dehumidification, WC Chiller, Gas Boiler
- Option 3: Variable Refrigerant Flow Heat Pumps, All Electric
- Option 4: Chilled Beams, WC Chiller, Gas Boiler

* At the time of block model analysis, building massing had been determined, but fenestration had not been designed.

Block Model

RESULTS: SITE ENERGY USE INTENSITY (EUI)

CONCEPTUAL "BLOCK" MODEL

HVAC OPTIONS	SITE EUI* (kbtu/sf/yr)	ANNUAL COST SAVINGS*
Option A: VAV RTU with Gas Boiler	39.7	base
Option B: Displacement Dehumidification, WC Chiller, Gas Boiler	36.4	8.3%
Option C: Variable Refrigerant Flow Heat Pumps, All Electric	35.2	11.3%
Option D: Chilled Beams, WC Chiller, Gas Boiler	38.7	2.5%

*ANNUAL COST SAVINGS WHEN COMPARED TO OPTION A

RESULTS: ANNUAL ENERGY COST

CONCEPTUAL "BLOCK" MODEL

HVAC OPTIONS	ENERGY COST (\$/SF-YR)	CAPITAL COST (\$/SF)	MAINTENANCE COST (\$/SF-YR)
Option A: VAV RTU with Gas Boiler	\$1.58	\$52.0	\$0.23
Option B: Displacement Dehumidification, WC Chiller, Gas Boiler	\$1.45	\$52.0	\$0.20
Option C: Variable Refrigerant Flow Heat Pumps, All Electric	\$1.66	\$42.0	\$0.33
Option D: Chilled Beams, WC Chiller, Gas Boiler	\$1.56	\$54.0	\$0.28

Based on values provided by Miyakoda Consulting:Electricity\$0.16/kWhGas\$1.10/Therm

EXPECTED TOTAL ANNUAL EQUIV. COST SERVICE LIFE (\$/SF-YR)

20 YEARS **\$5.31**

20 YEARS **\$5.14**

15 YEARS **\$5.51**

20 YEARS **\$5.47**

RESULTS: CARBON EMISSIONS

CONCEPTUAL "BLOCK" MODEL

HVAC OPTIONS	CARBON EMISSION / SF (kg CO2e)	PERCEN IMPROVEN
Option A: VAV RTU with Gas Boiler	2.86	base
Option B: Displacement Dehumidification, WC Chiller, Gas Boiler	2.62	8.3%
Option C: Variable Refrigerant Flow Heat Pumps, All Electric	2.70	5.5%
Option D: Chilled Beams, WC Chiller, Gas Boiler	2.80	2.1%

Based on eGrid Emission Factors for New England

NT VIENT

SUMMARY OF CONCEPTUAL BLOCK MODEL RESULTS

CONCEPTUAL "BLOCK" MODEL

	SITE EUI		E	ENERGY COS	т		CARBON E	MISSIONS
HVAC OPTIONS	SITE EUI (KBTU/SF/YR)	ENERGY COST (\$/SF-YR)	CAPITAL COST (\$/SF)	MAINTENANCE COST (\$/SF-YR)	EXPECTED OVERALL SERVICE LIFE	TOTAL ANNUAL EQUIV. COST (\$/SF-YR)	CARBON EMISSION / SF (KG CO2E)	PERCENT IMPROVEMENT
Option A: VAV RTU with Gas Boiler	39.7	\$1.58	\$52.0	\$0.23	20 YEARS	\$5.31	2.86	base
Option B: Displacement Dehumidification, WC Chiller, Gas Boiler	36.4	\$1.45	\$52.0	\$0.20	20 YEARS	\$5.14	2.62	8.3%
Option C: Variable Refrigerant Flow Heat Pumps, All Electric	35.2	\$1.66	\$42.0	\$0.33	15 YEARS	\$5.51	2.70	5.5%
Option D: Chilled Beams, WC Chiller, Gas Boiler	38.7	\$1.56	\$54.0	\$0.28	20 YEARS	\$5.47	2.80	2.1%

CYPRESS BUILDING: SD ENERGY MODEL

CURRENT DESIGN: EQUEST ENERGY MODEL - 3D VIEW

BROOKLINE HIGH SCHOOL EXPANSION APRIL 3, 2018

CYPRESS BUILDING SD ENERGY MODEL RESULTS: EUI

ENERGY USE INTENSITY COMPARISON (CURRENT DESIGN) - SCHEDULE

ANTICIPATED EXTENDED HOURS SCHEDULE

- Monday Friday 8:00am 3:00pm
- Evenings, Saturdays, Sundays (Adult Ed, Community events)
- Summer Use

- Monday Friday 8:00am 3:00pm
- No Summer Use

- EUI = 29.5
- Annual Energy Cost = \$95,210

- EUI = 25.5
- Annual Energy Cost = \$74,949

LE 00pm

CYPRESS BUILDING SD ENERGY MODEL RESULTS: ENVELOPE OPTIONS

EUI*

29.5

29.2

26.5

27.7

BUILDING ENVELOPE DESIGN OPTIONS

CURRENT DESIGN

- Facades B with 25% WWR**
- Facades A with 15% WWR

OPTION 1: Glazing Reduction in Facades A and B

- Facades with 25% WWR reduced to 20% WWR
- Facades with 15% WWR reduced to 10% WWR

OPTION 2: Further Glazing Reduction in Facades A & B 29.0

- Facades with 25% WWR reduced to 15% WWR
- Facades with 15% WWR reduced to 5% WWR

OPTION 3: Increase in Spandrel Glass in Facade C 29.3

- A-307 Change 1,000 sf of CW to Spandrel
- A-305 Change 1,000 sf of CW to Spandrel

OPTION 4: Glazing Reduction in A & B; Spandrel Increase in C 29.0

• Option-1 & Option-3

OPTION 5: No Windows

• Remove all windows from building (to demonstrate total impact of windows)

OPTION 6: Current Design with Triple Glazing

- Window assembly U-value reduced from 0.39 to 0.30
 - BROOKLINE HIGH SCHOOL EXPANSION APRIL 3, 2018

**WWR: Window-to-Wall Ratio

CYPRESS BUILDING SD ENERGY MODEL RESULTS: LEED

LEED

LEED GOAL (MINIMUM)

SILVER

CERTIFICATION REQUIREMENTS

CERTIFIED	40-49 POINTS
SILVER	50-59 POINTS
GOLD	60-79 POINTS
PLATINUM	80+ POINTS

LEED SCORECARD SUMMARY (AS OF MARCH 30, 2018)*

YES	49
MAYBE	38
NO	23

EAc2 OPTIMIZE ENERGY PERFORMANCE

14 Points (Town Goal: 13 pts)

* See Appendix for detailed LEED Scorecard

CYPRESS BUILDING: ENERGY CONSERVATION MEASURES (ECM)

SUMMARY

The following ECM's have been identified for the project:

- Improved envelope assemblies and fenestration
- Reduced interior lighting through the use of high efficiency LED fixtures
- High efficiency VAV with energy recovery better than ASHARE 90.1 requirements
- The design includes partial cooling for all classroom spaces. This results in a lower overall energy use for the project
- Supply air temperature reset
- Perimeter finned tube radiators (FTR's) with hot water heating
- Perimeter FTR's meet space loads during unoccupied periods eliminating the need for roof top VAV units to cycle on at night and unoccupied periods
- High efficiency condensing boilers and optimized hot water loop parameters
- High efficiency air-cooled chiller and optimized chilled water loop parameters

ROOF MOUNTED PHOTOVOLTAIC PANELS

ROOF AREA:	8,96
ANNUAL KWH PRODUCTION:	150
VALUE OF ELECTRICITY GENERATED ANNUALLY:	\$23
% OF TOTAL BUILDING ENERGY USE (ELECT & GAS)	14.

963 SF 0,480 KWH 3,625

.7%

CYPRESS BUILDING: NET ZERO FEASIBILITY

ADDITIONAL PV PANELS NEEDED TO ACHIEVE NET ZERO

AREA NEEDED FOR PV INSTALLATION:

ANNUAL KWH PRODUCTION:

ESTIMATED INSTALLATION COST:

* Does not include cost of panels mounted to Cypress roof which are not included in the SD budget.

State of Massachusetts Net Zero Definition

"A net zero building is one that is optimally efficient and, over the course of a year, generates energy onsite, using clean renewable resources, in a quantity equal to or greater than the total amount of energy consumed on site"

- 51,895 SF
- 870,804 KWH
- \$2,706,136*

STEM WING

• 70,000 sf addition to the existing Greenough Street Main Building, consisting of a new culinary arts kitchen/café, biology and chemistry classlabs, maker spaces, and collaborative spaces.

STEM WING: CONCEPTUAL BLOCK MODEL - CHILLER OPTIONS

COMPARISON OF WATER-COOLED (WC) & AIR-COOLED (AC) CHILLER

Chiller Design Basic Assumptions

• 400 ton capacity, assumes 600 full load hours per year

Chiller Options

- Option 1: Air Cooled Chiller Screw compressor chiller NPLV =13.7
- Option 2: Water Cooled Chiller Multi-stack modular 0.6kw/ton, 60 ft head condenser water pumping, cooling tower fans 0.05 hp/ton

Note: As an addition to the Main High School Building, STEM Wing HVAC systems will be supported by the current boiler plant in the Unified Arts Building. The existing 80% efficiency boilers will be replaced with 85% efficiency boilers. Since the mechanical plant will not be completely replaced, chiller selection will have the greatest impact on STEM Wing energy efficiency.

STEM WING CONCEPTUAL BOX MODEL RESULTS: CHILLER OPTIONS

COMPARISON OF WATER-COOLED (WC) & AIR-COOLED (AC) CHILLER: RESULTS

CHILLER TYPE	ELECTRICAL CONSUMPTION / YEAR (kWh)	COST / YEAR (\$)	COST SAVINGS (\$)
OPTION 1: Air Cooled	210,000	\$31,500	base
OPTION 2: Water Cooled	161,000	\$24,200	\$7,300

Based on values provided by Miyakoda Consulting: Electricity \$0.16/kWh

SITE SAVINGS (kbtu/sf/yr)

base

2.4

STEM WING: SD ENERGY MODEL

CURRENT DESIGN: EQUEST ENERGY MODEL - 3D VIEW

STEM WING SD ENERGY MODEL INPUTS: SCHEDULE

ANTICIPATED EXTENDED HOURS SCHEDULE

ACA	DEMIC SCHOOL YEA	N R		SUMMER	
MONDAY - FRIDAY	SATURDAY	SUNDAY	MONDAY - FRIDAY	SATURDAY	SUNDAY
LEVEL 1	LEVEL 1	LEVEL 1	LEVEL 1**	LEVEL 1**	LEVEL 1**
8:00AM - 10:00PM	8:00AM - 3:00PM	CLOSED	8:00AM - 3PM	8:00AM - 3:00PM	CLOSED
REST OF BUILDING* 8:00AM - 3:00PM	REST OF BUILDING CLOSED	REST OF BUILDING CLOSED	REST OF BUILDING <i>CLOSED</i>	REST OF BUILDING <i>CLOSED</i>	REST OF BUILDING <i>CLOSED</i>

*REST OF BUILDING: BASEMENT, LEVEL 2, LEVEL 3

**EXCEPT KITCHEN, WHICH IS CLOSED DURING THE SUMMER

STEM WING: SD ENERGY MODEL INPUTS: ENVELOPE & LIGHTING

BUILDING ENVELOPE & LIGHTING : SAME AS CYPRESS BUILDING

STEM WING: SD ENERGY MODEL INPUTS: MECHANICAL SYSTEMS

BASELINE DESIGN

- ASHRAF 90.1 2010
- Packaged VAV with Reheat (DX/Purchased HTHW)
- Natural draft boilers (80% efficiency)

CURRENT DESIGN

- spaces through the building air system.
- conditioned areas.
- replaced with 85% efficiency boilers.

• The building classrooms will be heated, ventilated and dehumidified only, providing partial cooling. Full air conditioning will be provided in Faculty

• Indoor design criteria will be 70°F in winter and 80°F/50%RH in summer for the dehumidified areas and 75°F/50%RH in summer for the fully air

• Building heating will be provided from the existing campus hot water heating plant. The existing building heat exchanger and pumping system will be upgraded to handle the added heating loads associated with the STEM addition. Boilers will be

• Building cooling, ventilation and dehumidification will be provided by curb mounted rooftop units.

STEM WING: SD ENERGY MODEL RESULTS

ENERGY USE INTENSITY COMPARISON - BASELINE VS CURRENT DESIGN

BASELINE DESIGN

- EUI = 102.5
- Annual Energy Cost = \$149,630
- Greenhouse Gas (GHG) Emissions = 388,960 kg CO2e

- EUI = 66.4*
- Annual Energy Cost = \$109,925 (26.5% energy cost savings
- reduction)

*Town EUI target of 25-30 cannot be achieved due to code required air exchange rates for science laboratories and HVAC systems fed from the existing high temperature boilers in UAB

• Greenhouse Gas (GHG) Emissions = 282,185 kg CO2e (27.4%

STEM WING SD ENERGY MODEL RESULTS: LEED RESULTS: LEED

The Current Design Case is expected to show:

• ANNUAL ENERGY-USE SAVINGS: 27.8%

as compared to an ASHRAE 90.1 2010 compliant Baseline building.

TOTAL ENERGY-COST SAVINGS: 24.2%

as compared to an ASHRAE 90.1 2010 compliant Baseline building.

• EAc2 OPTIMIZE ENERGY PERFORMANCE

11 points (26.5% energy cost savings)*

*Energy performance is limited by existing HVAC system in the Unified Arts Building. Higher efficiency, low temperature boilers cannot be specified without replacing all distribution piping through the Greenough Building with larger diameter pipes.

STEM WING: ENERGY CONSERVATION MEASURES (ECM)

SUMMARY

The following ECM's have been identified for the project:

- Improved envelope assemblies and fenestration
- Reduced interior lighting through the use of high efficiency LED fixtures
- High efficiency 100% outside air VAV energy recovery units for ventilation
- The design includes partial cooling for all areas, except the faculty spaces that have full air-conditioning. This results in a lower overall energy use for the project.
- Supply air temperature reset
- Perimeter finned tube radiators (FTR's) with hot water heating.
- Perimeter FTR's meet space loads during unoccupied periods eliminating the need for roof top VAV units to cycle on at night and unoccupied periods.
- Un-occupied ACH in lab spaces lower than ASHARE 90.1 2010 requirements
- Higher efficiency boilers and optimized hot water loop parameters
- High efficiency air-cooled chiller and optimized chilled water loop parameters

ROOF MOUNTED PHOTOVOLTAIC PANELS

ROOF AREA:	7,2
ANNUAL KWH PRODUCTION:	127
VALUE OF ELECTRICITY GENERATED ANNUALLY:	\$19
% OF TOTAL STEM WING ENERGY USE (ELECT)	24.
% OF TOTAL GREENOUGH ST BUILDING (ELECT)	9.4

52 SF

7,273 KWH

9,982

.5%

%

ADDITIONAL PV PANELS NEEDED TO ACHIEVE NET ZERO

AREA NEEDED FOR PV INSTALLATION:	73,
ANNUAL KWH PRODUCTION:	1,2
ESTIMATED INSTALLATION COST:	\$3.

* Does not include cost of panels mounted to Cypress roof which are not included in the SD budget.

State of Massachusetts Net Zero Definition

"A net zero building is one that is optimally efficient and, over the course of a year, generates energy onsite, using clean renewable resources, in a quantity equal to or greater than the total amount of energy consumed on site"

- 370 SF
- .31,152 KWH
- \$3,825,968*

BHS UTILITY COST COMPARISON

SUMMARY

	CURRENT			A	Ν
	GROSS FLOOR AREA	TOTAL UTILITY COSTS	TOTAL UTILITY COSTS / SF	GROSS FLOOR AREA	-
MAIN BUILDING	*337,930	\$321,837	\$0.95	**367,541	
TAPPAN GYM + POOL	114,433	\$329,630	\$2.88	***116,574	
UNIFIED ARTS BUILDING	56,176	\$104,275	\$1.86	56,176	
CYPRESS BUILDING	N/A	N/A	N/A	118,000	
TOTAL	508,539	\$755,742	\$1.49	658,291	

<u>Notes:</u>

* Main Building + Roberts Wing

** Main Building + STEM Wing: Energy cost for remaining Main Building calculated based on current unit cost

*** Tappan Gym + Pool + New Entry Addition: Energy cost for new Entry Addition calculated based on current unit cost

TICIPATED TOTAL UTILITY TOTAL UTILITY costs costs / sf \$393,535 \$1.07 \$335,797 \$2.88 \$104,275 \$1.86 \$94,567 \$0.80 \$928,174 \$1.41

